Оксидирование титана. Часть 1.

Химическое оксидирование титана.

Титан благодаря  своим ценным свойствам – легкости, прочности, высокой термической и коррозионной устойчивости является очень важным конструкционным материалом.

Наличие на поверхности тонкой, но достаточно плотной оксидной пленки, придает титану и его сплавам коррозионную стойкость в атмосфере, в пресной и морской воде, под напряжением, а также в кислотах органического происхождения.

Но в процессе эксплуатации от изделий порой требуются свойства, не соответствующие основному металлу, поэтому на  поверхность титана наносят специальные гальванические или химические покрытия (см.«Покрытие титана. Часть 1»).

В частности, титан и его сплавы отличаются низкой износостойкостью, что затрудняет их применение для деталей, работающих в условиях фрикционного износа. В резьбовых соединениях наблюдается задирание и наволакивание металла.

Для устранения этих недостатков рекомендуется применять процесс оксидирования титана. Оксидные  покрытия, образующиеся при этом, воздействуют на поверхностные слои, и  часто оказывают более сильное влияния на общие свойства металла, чем весь остальной материал изделия.

Оксидирование титана – это преднамеренное окисление поверхностного слоя металлических изделий, введение его в пассивное состояние. Полученные в результате оксидирования титана пленки позволяют:

  • повысить химическую стойкость металла;
  • изменить окраску его поверхности, придавая декоративность;
  • повысить адсорбционную способность поверхности для последующего нанесения лакокрасочных покрытий.

Эффективность такого метода определяется условиями процесса, составом металла, а также состоянием его поверхности.

Пассивное состояние (оксидирование титана) достигается двумя методами:

  • воздействием окислителей;
  • анодной поляризацией.

Для пассивации многих металлов используют растворы на основе окисляющих агентов, способных к образованию труднорастворимых соединений (хроматы, молибдаты, нитраты в щелочной среде и др.). Цвет поверхности при этом не изменяется.

Титан и его сплавы подчиняются общим закономерностям перехода из активного состояния в пассивное и обратно, установленным для других  пассивирующихся металлов (см. «Пассивация металлов»).

Скорость коррозии многих металлов часто значительно меньше в растворах сильных окислителей, чем в растворах окислителей более слабых. Сюда относятся такие металлы, как железо, хром, никель, титан, цирконий, алюминий и многие другие. Резкое уменьшение скорости коррозии на несколько порядков в сильных окислителях, казалось бы, противоречащее термодинамическим свойствам металла и окислителя, называется пассивацией, а состояние металла пассивным.

При повышенной температуре химическая активность титана значительно возрастает. Титан реагирует с кислородом, хлором, разбавленной серной кислотой. В азотной кислоте титан пассивируется, а в плавиковой кислоте в размельченном состоянии образует фторидные комплексы (см. «Покрытие титана. Часть 2»).

Присутствие в агрессивных средах небольших количеств окислителей смещает потенциал титана и его сплавов в растворах серной и соляной кислот в пассивную область, оксидируя титан,  при этом резко повышается коррозионная стойкость.

Присутствие в среде ионов тяжелых металлов и окислителей или наложение положительного потенциала способствует пассивации (оксидированию титана) в большинстве агрессивных сред.

Растворы пассивации (оксидирования титана).

1). 40 и 60%-ный раствор серной кислоты с контактом палладия и рения.

Пассивация наступает очень быстро и находится в устойчивом состоянии.

2). 60%-ный раствор серной кислоты в контакте с вольфрамом.

Пассивация наступает не сразу, а через длительный промежуток времени.

3). 80%-ная серная кислота в контакте с палладием.

Оксидирование титана.

Оксидирование титана.

Обнаружен еще один вид пассивации титана: химическая адсорбция отрицательных ионов, в частности гидроксила ОН. Коррозионная стойкость титана увеличивается, особенно против язвенной коррозии, при   добавлении  едкого натрия к раствору поваренной соли. Это можно объяснить адсорбцией гидроксильной группы OH и образованием защитного поверхностного слоя.

Тем не менее, на практике образование пассивирующего окисла в результате обычных реакций с участием атомов титана и молекул воды, не происходит.

Причина такого явления лежит в том, что поверхность титана всегда покрыта гидридным слоем, и в реакциях с водой участвует не сам титан, а его гидрид.

Для дополнительной, защиты от коррозии, повышения износостойкости, уменьшения задиров и декоративности поверхности применяют анодирование, т.е. электрохимическое оксидирование титана.

По вопросам технологии оксидирования титана обращайтесь к нам!

New!

Похожие публикации:

Запись опубликована в рубрике В помощь технологам. Добавьте в закладки постоянную ссылку.

Комментарии запрещены.